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Why silicon photonic networks?
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Data Center Challenge

« Bandwidth bottleneck
» Traditional tree structure —
aggregation bottleneck
 New Data Center
applications —
increased “East / West” traffic
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» Power efficiency must be
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with Tree Architecture




Exascale

* Improving energy and power efficiency is the
most formidable challenge

— Exascale machines must be approximately 1000
times more energy efficient than current
machines

e Recommended approaches by US National
labs include

— Silicon photonic interconnects —focus

— Hardware Software co-design —focus

S. Hemmert et al. Exascale Hardware Architectures Working Group, NNSA Workshop: From Petascale to
Exascale: R&D Challenges for HPC Simulation Environments, March 21, 2011

J. Shalf et al., Rethinking Hardware Software Codesign for Exascale Systems, Computer , Nov. 2011



Photonics is getting there

2012: Blue Gene/Q

20.013 Pflops .. 1.572M Compute

e U -

= Optical transceivers tightly integrated, mounted within drawer
= 8 Hub/switch modules (8 x 56 optical modules)

I AWRENCE LIVE RI\\ORP

Science in the National Interest

F. Doany, Hot Interconnects 2012

{ Fiber Optic VO Ports | — Acknowledgment: A. Benner



Advances in Network Integration
Hybrid Networks
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Optical switch challenges

* Want a switch with
— High bandwidth capacity
— High port count
— Low power
— Small footprint
— Fast switching speed
— Low cost




Silicon Photonics

* CMOS compatible silicon photonics

— Opens new possibilities for multiwavelength
(WDM) photonic circuits

— Integration for low power consumption, high
bandwidth, overcoming pin count limitations

— Area of intense research, IBM, MIT, Intel, TUE,
UCSB, Oracle, Mellanox and many others

DasMahapatra et al.
— OFC 2013

Padmaraju et al.

Droz et al.
Opt. Express 2008 Opt. Express 2012

Lee etal. OFC 2013 ———



Single ring resonator
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Carrier injection — fast but low tuning range
Thermo-optic — limited speed but full tuning

Challenge
» Temperature and Fabrication dependent resonant wavelength




Switching element

Fiz. I: (a) Atomic switching element depicting message
propagaton in two possible states. (b) 2+4 non-blocking
nanophotonic switching node.

Wang et al. OFC 2008




Higher order resonators: Resilience to
temperature and wavelength detuning

Insertion loss (dB)
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Ref: Vlasov (IBM)., Tutorial ECOC, 2008 Ref: A.Rohit et al., PTL, Dec 2012



Minimizing Fabrication-induced mismatch
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Fig. 1. (a) Optical microscope image of a fabricated adiabatically widened
microring in SOI with an oxide cladding. (b) Resonance wavelength shift as a
function of the nominal dimensional offset. (From [6])

Ref: Poon et al., Redesigning active and passive microring resonators



Initialize microring wavelength using

—heaters

N—

Through port
Optical response

| }

[A. Krishnamoorthy 2011]

[M. Watts 2010]



Dither based locking

Dither signal

Transmission

— Wavelengt \ g 1

In phase | I Mixer
optical modulation

Filter

Error signal

Out of phase
optical modulation

Error Signal
o

[K. Padmaraju 2013]



Wavelength Locking of a WDM Microring Demux

WDM Microring DemUItipleXing Filter Generation of Error Signals
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Experimental Demonstration: Initialization of a Microring Demultiplexer

Qlntegrated heaters must tune microring filters to WDM channels

OWe have developed techniques (in mixed-signal circuitry) to wavelength lock & thermally stabilize
microring resonators.

ORequired migration of our techniques to an FPGA platform such that it can be incorporated into the FPGA

testbed. S

K. Padmaraju et al., OFC 2014



Feedback controller settling time

Ideal response

0 50 100
Time (us)
* Feedback lock is order magnitude slower than ideal

* Limited by error signal generation, and the dither frequency

Zhu et al. Optical Interconnects 2014



FPGA Programmable SiP Interconnection Network
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Microring Modulator Array

CW Light Modulated Light
: Cﬂ C}J Cj O (4 x 10 Gb/s)
Monitoring Signals< J

*Actively thermally stabilized variant:
*>5 dB ER with ~ 2 Vpp drive
*< 5 dB IL (excluding fiber coupling)

*To include heaters (local and global)
*To include on-chip photodetectors on drop ports




WDM Demux Array

WDM Channels
(4A x 10 Gb/s)

i

=

Filtered Data
Channels
(1A x 10 Gb/s
per port)

*Separates each channel to a different output port for detection

by off-chip photodetectors

*Gen 2 includes additional on-chip slow photodetectors for

thermal stabilization

*Low penalty for filtering 10-Gb/s channels

<1dBIL

*< -20 dB crosstalk between wavelength channels




Switch

e —> Sutput

* 4x4 switch (non-blocking) for - r:‘r%:
routing between four inputs : -
and four outputs o utpul

e 8rings with thermal tuning
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Physical Level Control for SiPh

* Photonic devices require dedicated driving and stabilization.
* Digital logic for

. . Optical ! Optical
— Balanced coding / decoding Input! Output!
————— > -————>
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] : 1 DAC / PWM output
~ Thermal stabilization through optical feedback Digital PID controller

Standard logic elements



FPGA Programmable SiP Interconnection Network
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Mach Zehnder based switch
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Fig. 1. (a) Die image showing a four-channel driver test site. (b) Magnified

image of the WIMZ switch outlined in (a). (¢) Schematic of the digital switch
driver. (d) Custom test card.

TABLE II
CMOS-DrIVEN 4 = 4 MZ FABRIC EXTRACTED POWER AND ENERGY
PERFORMANCE

Static Power' Switching Energy”

Supply Rail (mW) (pJicycle)
Logic <21 -
PA 24 82 Fig. 6. (a) Topological arrangement and (b) micrograph of the 4 x 4 fabric.
0s . 7.6 24 (c) Topological arrangement and (d) micrograph of the 8 x 8 fabric. The dashed
Thermo-Optics 344 - lines in (a) and (c) represent 2 x 2 MZ-based switching elements.
Taotal 46.5 106

' Average power assuming a 50% state probability.
Includes turn-on and turn-off dissipations.

B. Lee et al. Journal Lightwave Technology 2014



Simulations

» Scaling
— Most experiments done on smaller scale testbeds

— Working data centers aren'’t turned off to do an
experiment.

» Effects of changes without complete
implementation

— Current application performance on new architecture

— Studies at extreme scales and evaluation of new
programming models and algorithms




Photonic-Enabled Systems:
Multi-Level Co-Design

PhoenixSim: Design, Modeling and Simulation Environment

- Physical link layer: »_ ___________ £t v
. . - — N . |

- SiP components modeling : '“T-;g 3 <2 |

. Llnk. bandwidth mammaaponI N o1} v Y g

- Optical power budget validation RS 7+ ey

- Network layer
- Optical data flow, switching, routing protocols
- Network performance analysis

- Application layer
- BW and data flow application mapping
- Optically enabled algorithm re-design
- Large scale application simulation

S. Rumley et al., ICTON 2013, Optical Interconnects 2014



Silicon Photonics Challenges

e Photonics has demonstrated enormous
bandwidth capabilities for telecoms

* But must reduce size, cost, power for
datacomms

* Current challenges for Silicon Photonics

— Microring stability and resilience to fabrication
variations
— System integration

* Building interfaces to computer networks
* Demonstrating performance improvements for users
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